Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37238656

RESUMO

Actin polymerization drives cell movement and provides cells with structural integrity. Intracellular environments contain high concentrations of solutes, including organic compounds, macromolecules, and proteins. Macromolecular crowding has been shown to affect actin filament stability and bulk polymerization kinetics. However, the molecular mechanisms behind how crowding influences individual actin filament assembly are not well understood. In this study, we investigated how crowding modulates filament assembly kinetics using total internal reflection fluorescence (TIRF) microscopy imaging and pyrene fluorescence assays. The elongation rates of individual actin filaments analyzed from TIRF imaging depended on the type of crowding agent (polyethylene glycol, bovine serum albumin, and sucrose) as well as their concentrations. Further, we utilized all-atom molecular dynamics (MD) simulations to evaluate the effects of crowding molecules on the diffusion of actin monomers during filament assembly. Taken together, our data suggest that solution crowding can regulate actin assembly kinetics at the molecular level.


Assuntos
Citoesqueleto de Actina , Actinas , Actinas/metabolismo , Polimerização , Citoesqueleto de Actina/metabolismo , Movimento Celular/fisiologia , Simulação de Dinâmica Molecular , Cinética
2.
Sci Adv ; 8(29): eabl4733, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35857845

RESUMO

The motor protein myosin-15 is necessary for the development and maintenance of mechanosensory stereocilia, and mutations in myosin-15 cause hereditary deafness. In addition to transporting actin regulatory machinery to stereocilia tips, myosin-15 directly nucleates actin filament ("F-actin") assembly, which is disrupted by a progressive hearing loss mutation (p.D1647G, "jordan"). Here, we present cryo-electron microscopy structures of myosin-15 bound to F-actin, providing a framework for interpreting the impacts of deafness mutations on motor activity and actin nucleation. Rigor myosin-15 evokes conformational changes in F-actin yet maintains flexibility in actin's D-loop, which mediates inter-subunit contacts, while the jordan mutant locks the D-loop in a single conformation. Adenosine diphosphate-bound myosin-15 also locks the D-loop, which correspondingly blunts actin-polymerization stimulation. We propose myosin-15 enhances polymerization by bridging actin protomers, regulating nucleation efficiency by modulating actin's structural plasticity in a myosin nucleotide state-dependent manner. This tunable regulation of actin polymerization could be harnessed to precisely control stereocilium height.

3.
Patterns (N Y) ; 2(11): 100367, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34820649

RESUMO

Recent advances in machine learning have greatly enhanced automatic methods to extract information from fluorescence microscopy data. However, current machine-learning-based models can require hundreds to thousands of images to train, and the most readily accessible models classify images without describing which parts of an image contributed to classification. Here, we introduce TDAExplore, a machine learning image analysis pipeline based on topological data analysis. It can classify different types of cellular perturbations after training with only 20-30 high-resolution images and performs robustly on images from multiple subjects and microscopy modes. Using only images and whole-image labels for training, TDAExplore provides quantitative, spatial information, characterizing which image regions contribute to classification. Computational requirements to train TDAExplore models are modest and a standard PC can perform training with minimal user input. TDAExplore is therefore an accessible, powerful option for obtaining quantitative information about imaging data in a wide variety of applications.

4.
Biochem Biophys Res Commun ; 532(4): 548-554, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32900483

RESUMO

Gelsolin is a calcium-regulated actin binding protein that severs and caps actin filaments. Gelsolin's severing activity is important for regulating actin filament assembly dynamics that are required for cell motility as well as survival. The majority of in vitro studies of gelsolin have been performed in dilute buffer conditions which do not simulate the molecular interactions occurring in the crowded intracellular environment. We hypothesize that crowding results in greater gelsolin severing activity due to induced conformational changes in actin filaments and/or gelsolin. In this study, we evaluated the effects of crowding on gelsolin-mediated actin filament severing and gelsolin binding to actin filaments in crowded solutions, utilizing total internal reflection fluorescence (TIRF) microscopy and co-sedimentation assays. Our data indicates that the presence of crowders causes a decrease in the rate of gelsolin severing as well as a decrease in the amount of gelsolin bound to actin filaments, with greater effects caused by the polymeric crowder. Despite the severing rate decrease, gelsolin-mediated filament severing is increased in the presence of crowders. Understanding the crowding effect on gelsolin-mediated actin filament severing offers insight into the interactions between gelsolin and actin that occur inside the crowded cytoplasm.


Assuntos
Citoesqueleto de Actina/metabolismo , Gelsolina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Coelhos
5.
ACS Omega ; 3(12): 18304-18310, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458407

RESUMO

Polyelectrolyte hydrogel fibers can mimic the extracellular matrix and be used for tissue scaffolding. Mechanical properties of polyelectrolyte nanofibers are crucial in manipulating cell behavior, which metal ions have been found to enable tuning. While metal ions play an important role in manipulating the mechanical properties of the fibers, evaluating the mechanical properties of a single hydrated hydrogel fiber remains a challenging task and a more detailed understanding of how ions modulate the mechanical properties of individual polyelectrolyte polymers is still lacking. In this study, dark-field microscopy and persistence length analysis help directly evaluate fiber mechanics using electrospun fibers of poly(acrylic acid) (PAA), chitosan (CS), and ferric ions as a model system. By comparing the persistence length and estimated Young's modulus of different nanofibers, we demonstrate that persistence length analysis is a viable approach to evaluate mechanical properties of hydrated fibers. Ferric ions were found to create shorter and stiffer nanofibers, with Young's modulus estimated at a few kilopascals. Ferric ions, at low concentration, reduce the Young's modulus of PAA and PAA/CS fibers through the interaction between ferric ions and carboxylate groups. Such interaction was further supported by nanoscale infrared spectroscopy studies of PAA and PAA/CS fibers with different concentrations of ferric ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...